
gb-starter-kit build system breakdown
Eldred Habert∗

February 22, 2025

Summary and Intended Audience

This document is useful for people who wish to understand why gb-starter-kit’s
Makefile (build script) is written in the way that it is, why and how it does what
it does, and perhaps also gain some insight into Makefile good practices.

It does contain a fairly quick primer on what a Makefile is, so it is intended to
be suitable to people who have never touched a Makefile before.

Contents
1 Build rules 2

1.1 Asset rules . 4
1.1.1 Graphics conversion . 5
1.1.2 Compression . 6
1.1.3 VPATH . 7

1.2 Assembly rules . 7
1.2.1 Assembling source files . 8
1.2.2 Dependency auto-discovery . 8
1.2.3 Linking and fixing the ROM . 9
1.2.4 Submodules . 9

2 Phony rules 10
2.1 Building the ROM . 10
2.2 Cleaning temporary and final files . 10

3 Configuration 11
3.1 Project-specific configuration . 12

3.1.1 ROM header . 12
3.1.2 Compatibility settings . 13
3.1.3 Miscellanea . 14

4 Overall structure 14
4.1 Make configuration . 14
4.2 Miscellanea . 15
4.3 Rules . 15

∗Contributions by JL2210, Damian Yerrick, Evie, and Starleaf.

1

https://eldred.fr

1 Build rules

If you already know how a Makefile is structured, then you can skip
ahead to subsection 1.1.

A Makefile’s primary function is to describe how to build files from other files. Since
it is descriptive in nature (like HTML), and not imperative like a programming language,
Make (the program) is able to decide by itself how to perform the actual building opti-
mally.

In their purest form, build rules look a little something like this:

hello.o: hello.c hello.h
gcc -c -o hello.o hello.c

Here’s how to read the above snippet:

The file hello.o is built from the files hello.c and hello.h.
To update hello.o, the following commands should be run:

• gcc -c -o hello.o hello.c

There’s a lot to unpack here. First, a bit of terminology:

• hello.o is called a target, since it’s what the rule aims to describe.

• hello.c and hello.h are called prerequisites, since they are necessary to build
the “target”. You can also think of them as ingredients.

• And finally, the list of commands is called the recipe.

Also, Make is designed to avoid running commands that are superfluous; this helps keep
build times low. Make determines that a file is “out of date” by comparing the time of the
last modification of itself, versus that of each of its dependencies. When Make determines
that one of the prerequisites is “newer” than the target (or that the target doesn’t
exist at all), then the recipe is run.

Now, let’s tweak the rule a little, for some extra conveniences.
For example, we might want to modify the C compiler we use, without having to

search-and-replace in a lot of places in the Makefile (assuming there are many rules like
this one). We can use variables for that.1

CC := gcc

hello.o: hello.c hello.h
${CC} -c -o hello.o hello.c

1It is possible to use parentheses instead of braces, but I’ve found it helpful to reserve braces for
variables, since function calls (more on them later) require parentheses.

2

Variables in Make work essentially as if you copy-pasted their contents wherever you
reference them. You could write CC := gcc -g and it would work.2

Another irk with that rule is that there is some repetition—the file names appear
both in the first line and in the recipe! Thankfully, Make defines some magic variables
that let us do away with that. They just... have weird names.3

hello.o: hello.c hello.h
${CC} -c -o $@ $<

Here are the only four of these “automatic variables” you will probably ever need to
know about:

$@ The rule’s current target
$< The first (leftmost) prerequisite
$^ All of the prerequisites
$* The part of the file names matched by the % character

Ah, now’s a good time to explain the % character. See, what we’ve examined thus
far is an explicit rule: it explicitly specifies how to build one4 file, and that’s it. By
contrast, an implicit rule describes how to make any file matching some criteria. The
most common type of implicit rule is what’s known as a pattern rule:

%.o: %.c %.h
${CC} -c -o $@ $<

This starts getting more complicated: instead of defining a rule that clearly states
how to make specific file(s), we now have a rule that, broadly, states how to make a kind
of file.

When trying to look up info on a file, Make first looks for an explicit rule stating how
to make it. If there are none, then it tries all pattern rules one by one: for each, it tries to
replace the % in the target portion so that said portion matches the file’s path. (There are
some rules for choosing a specific one when multiple match at the same time, but if you
want to get that technical, you should definitely start reading Make’s documentation.)

Using automatic variables is largely a nicety when using explicit rules, but they be-
come pretty much required when you start using implicit rules.

There is, however, a very important requirement for Make to accept an implicit rule
as applicable: all of its prerequisitites must either already exist, or be able to be made
(by explicit or implicit rules). This leads to a common source of confusion This causes,
in particular, a commonly confusing error message, which we will illustrate using a little
feline example.

Let’s pretend that we are in a directory containing the following Makefile:

2This is part of why Make really can’t deal with whitespace in file names.
3Oh, and, braces are not necessary around a variable’s name when it’s a single character. So you

can write $Q as a shorthand for ${Q} / $(Q), for example.
4One or more, actually; but a finite number regardless.

3

https://www.gnu.org/software/make/manual/

%.meow: %.cat
printf '%s goes "meow!"\n' "$$(cat $<)" >$@

%.gz: %
gzip <$< >$@

...and that we run the following commands:

$ echo Pachatte >my.cat
$ make my.meow.gz # Ignore the `rm my.meow' line for now.
printf '%s goes "meow!"\n' "$(cat my.cat)" >my.meow
gzip <my.meow >my.meow.gz
rm my.meow
$ zcat <my.meow.gz # `zcat' prints the contents of gzipped files.
Pachatte goes "meow!"
$ ls # Notice the lack of `no.cat'...
Makefile my.cat my.meow.gz
$ make no.meow.gz
make: *** No rule to make target 'no.meow.gz'. Stop.

You might expect Make to complain that no.cat does not exist, rather than that it
doesn’t know how to make no.meow.gz. Clearly, making a .gz file requires the corre-
sponding file (no.meow), and that in turn no.cat!

Unfortunately, this is not how things go. Since no.cat doesn’t exist, Make rejects
the first pattern rule, and decides that it doesn’t know how to make no.meow. In turn,
this causes it to reject the second pattern rule, and decide that it doesn’t know how to
make no.meow.gz either!

tl;dr: If Make complains that it doesn’t know how to make a file
when it looks like there is a pattern rule that should work: check
that rule’s prerequisites.

You can try passing the -d / --debug option to ask Make to “show its work”, but
note that Make has a ton of built-in implicit rules that will create a lot of noise, so I
recommend also passing the -r / --no-builtin-rules.

Also, the rm my.meow command was inserted by Make itself, since it decided that
my.meow is an intermediate file that doesn’t need to be kept.

Now, let’s start looking at actual rules from the Makefile.

1.1 Asset rules
Although these are probably not what you came here for, they are simpler than the
assembling rules explained later, and so will serve as a more gentle introduction.

4

1.1.1 Graphics conversion

Both of these rules delegate the task to RGBGFX.
5 ⟨Asset rules 5⟩≡ (15c) 6a ▷

assets/%.2bpp: assets/%.png
@mkdir -p "${@D}"
${RGBGFX} -o $@ $<

assets/%.1bpp: assets/%.png
@mkdir -p "${@D}"
${RGBGFX} -d 1 -o $@ $<

These are almost identical, with the single difference that .1bpp files are converted
with an additional -d 1 option.

What’s new, is the @mkdir -p "${@D}" line. It creates the directory that the target
will be created into; but how exactly does it do that?

Let’s begin with the @ sign: it suppresses command echo. If you have used Make, you
probably noticed that it prints every command right before executing it.5 But this mkdir
command is not really interesting, and you will see later that it’s present everywhere.
Having it echoed all the time would pretty much drown out the commands we really care
about; so, we suppress it.

On to the command itself: mkdir stands for “make directory”, and it pretty much
does what it says on the tin. Now, mkdir has some interesting behaviour: by default,
mkdir a/b errors out if a doesn’t exist, and also if a/b already exists. The -p option,
which can also be written as --parents, is designed to suppress the former behaviour
(“create the directory I’m interested in, but also all of its parents as necessary”), but
interestingly it also suppresses the latter behaviour.

And, finally, we should talk about that little ${@D} nugget. (I will not go into detail
about the quotes, because they are passed as-is by Make to the shell, and shell quoting
is an entire rabbit hole that doesn’t really belong here.) See, for each automatic variable
(here, $@, the short form of ${@}), Make defines two extra variables: the one with an
extra D contains the directory portion of its contents, and the one with an extra F contains
the file portion.

All this might have been a little too theoretical and confusing, so let’s try making it
more concrete. Say Make is trying to build a file located at assets/player/running.2bpp.
Substituting the “pattern” (%), we get:

assets/player/running.2bpp: assets/player/running.png
${RGBGFX} -o $@ $<

And, replacing the automatic variables:

assets/player/running.2bpp: assets/player/running.png
${RGBGFX} -o assets/player/running.2bpp assets/player/running.png

Now, picture a project that contains hundreds of .png files. Instead of having hun-
dreds of bespoke rules, this one little rule can serve all of them!

5If you find this annoying, you can pass the -s “silent” option to Make.

5

1.1.2 Compression

Compression can be important, as one can run out of ROM size quicker than you’d expect.
Smaller data also means it’s easier to fit all of it in the same bank, and any bankswitch
removed from code is always a win!

Compression methods are a complex topic, so gb-starter-kit provides one that’s known
to be relatively easy to use and compresses tile data reasonably well.

6a ⟨Asset rules 5⟩+≡ (15c) ◁ 5 6b ▷

assets/%.pb16: src/tools/pb16.py assets/%
@mkdir -p "${@D}"
$^ $@$

This rule contains a cheeky little trick: its use of $^. See, the first prerequisite is the
script that needs to be executed to perform the compression, so after $^ is expanded, it
looks like src/tools/pb16.py assets/player/running.2bpp $@—and this looks a lot
like a command, doesn’t it?

Anyhow, this rule is a good occasion to talk about what I like to call “rule chaining”.
For example, if you ask Make to make assets/player/running.2bpp.pb16, then the
following happens:

1. Make checks if assets/player/running.2bpp.pb16 exists. (Let’s pretend it does
not.)

2. Make checks if it knows how to make that file. It finds the assets/%.2bpp rule!

(a) Make checks if assets/player/running.2bpp exists. (Let’s pretend that one
does not exist either.)

(b) Make checks if it knows how to make that file. It finds the assets/%.png rule!
i. Make checks if assets/player/running.png exists. It finds that file!

(c) Make now converts the .png file into .2bpp.

3. Make now converts the .2bpp file into .2bpp.pb16.

It’s arguably a bit of an involved process, but that way, Make is able to run the
last two steps in sequence, and creates assets/player/running.2bpp.pb16 just from
assets/player/running.png. I’ve seen people getting confused by the two steps in-
volved in what can otherwise seem like a single operation (running make just once), so
hopefully this can clear it up for you.

6b ⟨Asset rules 5⟩+≡ (15c) ◁ 6a 7a ▷

assets/%.pb16.size: assets/%
@mkdir -p "${@D}"
printf 'def NB_PB16_BLOCKS equ ((%u) + 15) / 16\n' \

"$$(wc -c <$<)" >assets/$*.pb16.size

6

The lone backslash (\) is simply a line continuation character, be-
cause this line is really long, and would overflow the box above
otherwise!

Notice the $$: because we want that dollar sign to be interpreted by the shell, not by
Make, we have to escape it... and that’s done by doubling it6.

Then, we have pretty much a copy-paste of the above two, but for the PackBits8
compression scheme. Where PB16 performs well on 2bpp tile data, PB8 does better on
1bpp tile data.

7a ⟨Asset rules 5⟩+≡ (15c) ◁ 6b

assets/%.pb8: src/tools/pb8.py assets/%
@mkdir -p "${@D}"
$^ $@

assets/%.pb8.size: assets/%
@mkdir -p "${@D}"
printf 'def NB_PB8_BLOCKS equ ((%u) + 7) / 8\n' \

"$$(wc -c <$<)" >assets/$*.pb8.size

1.1.3 VPATH

Now, as we will see later, the assets/ directory gets entirely removed when running
make clean (the “restart from scratch” command). Yet, as we’ve seen above, asset rules
convert files in assets/ into other files in assets/. Making two versions of each rule
(one expecting files from assets/, and the other from src/assets/) is a possibility, but
it would very annoying.

7b ⟨VPATH 7b⟩≡ (15c)

VPATH := src

This line sets the VPATH variable, which is special to Make: when it fails to find a file,
it tries again by prepending src/ to the path. So, assets not found in assets/ are also
looked for in src/assets/, which is not cleared by make clean!

1.2 Assembly rules
Let’s get to business!

Building a ROM with RGBDS has three steps to it, which I will now sample from its
manual:

1. Assemble source files into one object file each;

2. Link all of the object files into a “raw” ROM;
6Internally, this is done by having a variable called $, and whose contents are a single dollar sign.

Yes, ${$} is valid, but why would you do that!?

7

https://rgbds.gbdev.io/docs/rgbds.7/
https://rgbds.gbdev.io/docs/rgbds.7/

3. “Fix” the ROM so the console will accept it

If you are wondering why there is more than one step, the GB ASM
tutorial has you covered.

1.2.1 Assembling source files

Here is how we create an object file:
8a ⟨Assembly rules 8a⟩≡ (15c) 8b ▷

obj/%.o: obj/%.mk
@touch -c $@

Wait... what? touch only pretends to modify the file, so that Make doesn’t re-run
the rule7. And what’s a .mk file, anyway?

Well, we need to talk about the dependency auto-discovery .

1.2.2 Dependency auto-discovery

For RGBASM to assemble a file, it must also be able to read every file that gets INCLUDEd
or INCBIN’d. But, we don’t know what files need to be made ahead of time! (Unless you
want to make an exhaustive list in the Makefile, but believe me, that gets tiring fast.)

So, we instead make use of RGBASM’s ability to inform Make of the files it needs
to assemble. This is achieved using its -M option, specifying the files that are generated
using -MQ (both the .mk file and the .o one!). The -MP option is explained in the manual,
but -MG is worth extra attention.

-MG tells RGBASM that some of the files it it told to INCLUDE and/or INCBIN may be
missing; and that if this were to happen, instead of erroring out like usual, it should note
them in the .mk file, and exit normally. When this happens, as we’ll discuss more below,
this will cause Make to “reload” its dependency information from the modified .mk file,
(try to) make the newly discovered dependencies, and then re-run RGBASM, until the
.o file is successfully created!

8b ⟨Assembly rules 8a⟩+≡ (15c) ◁ 8a 9a ▷

obj/%.mk: src/%.asm
@mkdir -p "${@D}"
${RGBASM} ${ASFLAGS} -o ${@:.mk=.o} $< \

-M $@ -MG -MP -MQ ${@:.mk=.o} -MQ $@

The ${@:.mk=.o} syntax means “expand to the contents of $@, but replace the .mk
file extension with .o”.

7-c ensures that the file isn’t created if it doesn’t already exist.

8

https://gbdev.io/gb-asm-tutorial/part1/toolchain.html
https://gbdev.io/gb-asm-tutorial/part1/toolchain.html
https://rgbds.gbdev.io/docs/rgbasm.1/#MP

Savvy users of Make might suggest merging the touch rule above
with this one. But that would be incorrect! Because, then, Make
assumes that the rule will create both files, even though this rule
needs to be executed many times for the .o one to end up being
created; this causes, in particular, spurious build failures, or some
versions of Make running the same command over and over forever.

We also need to inform Make of the dependency files that it should read; but, we
don’t do so when running make clean, as we don’t need dependency info when we’re
trying to wipe the slate clean!

9a ⟨Assembly rules 8a⟩+≡ (15c) ◁ 8b 9b ▷

ifeq ($(filter clean,${MAKECMDGOALS}),)
include $(patsubst src/%.asm,obj/%.mk,${SRCS})
endif

Interestingly, Make also treats every such file as a target that needs to be made, and
so it will automatically try to generate them if they don’t exist yet.

Importantly also, include causes Make to restart from scratch after one of the in-
cluded files has been modified; this is how we get the “progressively retrying” behaviour
we want for dependency auto-discovery.

1.2.3 Linking and fixing the ROM

Once all of the object files are generated, we can link them all together (notice the use
of $^!), and fix the ROM.

Notice that this also unconditionally assembles the build date file. That ensures that
the build date is always refreshed.

9b ⟨Assembly rules 8a⟩+≡ (15c) ◁ 9a 10a ▷

${ROM}: $(patsubst src/%.asm,obj/%.o,${SRCS})
@mkdir -p "${@D}"
${RGBASM} ${ASFLAGS} -o obj/build_date.o src/assets/build_date.asm
${RGBLINK} ${LDFLAGS} -m bin/$*.map -n bin/$*.sym -o $@ $^ \
&& ${RGBFIX} -v ${FIXFLAGS} $@

1.2.4 Submodules

A Git “submodule” is, largely, a Git repository inside of a Git repository; this has the
benefit of making it easier to update the submodules, but the downside of being a little
quirky.

By default, cloning the repo does not initialise submodules (so they are empty); if
that happens, Make would normally fail with some “file not found” error, but this rule
makes it print a more user-friendly error message instead.

9

Note that the real paths aren’t used! Since RGBASM fails to find the files, it out-
puts the path(s) as passed to include, not where the file would actually be found (e.g.
src/hardware.inc/hardware.inc).

10a ⟨Assembly rules 8a⟩+≡ (15c) ◁ 9b

hardware.inc/hardware.inc rgbds-structs/structs.asm:
@echo '$@ is not present; have you initialized submodules?'
@echo 'Run `git submodule update --init`,'
@echo 'then `make clean`,'
@echo 'then `make` again.'
@echo 'Tip: to avoid this, use `git clone --recursive` next time!'
@exit 1

You can see that there aren’t any prerequisite files here—this is normal. Since there
are no prerequisites, this rule can only trigger if the target file doesn’t exist—precisely
what we want!

2 Phony rules
Consistently with our trend of lacking consistency, let’s now talk about rules that aren’t
really rules: so-called “phony rules”.

These are handy as quick little aliases: typing make all is much easier to remember
and much less tedious to type than make bin/dinosaurs_with_lasers.gb, for example.
Since this is a commonly desirable feature, these names are common conventions.

2.1 Building the ROM
all is the conventional “build the things I am likely to want”—in our case, the ROM
and accompanying debug information. It is also a little special, as it is the first rule in
the file (as we will see in section 4), it is also the “default” target, i.e. what Make selects
as its target if invoked without one (just make).

10b ⟨Phony rules 10b⟩≡ (15c) 11a ▷

all: ${ROM}
.PHONY: all

2.2 Cleaning temporary and final files
clean is the conventional “forget everything prior” target; it causes everything generated
by prior invocations of Make to be deleted.

(As we have seen in subsubsection 1.2.2, we also made it a little special, its presence
suppressing dependency auto-discovery.)

10

11a ⟨Phony rules 10b⟩+≡ (15c) ◁ 10b

clean:
rm -rf bin obj assets

.PHONY: clean

3 Configuration
Time for piles of variables!

First, this block allows one to customise where the build process will look for RGBDS.
It is possible to customise the location (or even name!) of each of the programs individ-
ually, or in bulk thanks to the RGBDS variable.

11b ⟨Configuration 11b⟩≡ (15b) 11c ▷

RGBDS ?=
RGBASM := ${RGBDS}rgbasm
RGBLINK := ${RGBDS}rgblink
RGBFIX := ${RGBDS}rgbfix
RGBGFX := ${RGBDS}rgbgfx

The ?= assignment may raise some eyebrows. Where := sets the value of a variable,
?= also sets it except if an environment variable of the same name was passed to Make,
in which case that environment variable takes precedence.

This allows the following to work:

$ ls ~/rgbds-0.9.1
rgbasm rgbfix rgbgfx rgblink
$ export RGBDS=~/rgbds-0.9.1
$ make
~/rgbds-0.9.1/rgbasm -p 0xFF (etc.)

Then, we have some options that will be passed to the RGBDS programs.
11c ⟨Configuration 11b⟩+≡ (15b) ◁ 11b 11d ▷

INCDIRS := src/ include/
WARNINGS := all extra
ASFLAGS = -p ${PADVALUE} $(addprefix -I,${INCDIRS}) $(addprefix -W,${WARNINGS})
LDFLAGS = -p ${PADVALUE}
FIXFLAGS = -p ${PADVALUE} -i "${GAMEID}" -k "${LICENSEE}" -l ${OLDLIC} -m ${MBC} -n ${VERSION} -r ${SRAMSIZE} -t ${TITLE}

And some file names:
11d ⟨Configuration 11b⟩+≡ (15b) ◁ 11c 12a ▷

ROM = bin/${ROMNAME}.${ROMEXT}
SRCS := $(call rwildcard,src,*.asm)

11

And, last but not least, including the file containing project-specific configuration.
12a ⟨Configuration 11b⟩+≡ (15b) ◁ 11d

include project.mk

Rather than modifying this Makefile for each project, for example to change the
ROM’s file name, this can be used to override the above default configuration.

You may have noticed that some of the variable assignments above used :=, but others
used =. What’s the difference? A variable assigned with := has its value immediately
computed; however, = instead has the variable’s value computed each time it it referenced.
In particular, this allows the variables to reference variables that don’t exist yet (PADVALUE
is defined after ASFLAGS, in project.mk).

3.1 Project-specific configuration
Let’s detail the contents of that file. The description of RGBFIX’s options can be useful
to understand what all of these options do, and especially the syntax that they accept.

3.1.1 ROM header

The following control the various options passed to RGBFIX, which set the fields of the
ROM’s header. Emulators do rely on some of these; but it can be cool to customise even
the “useless” ones, since they show up here and there. Some people will notice, and find
it cute or clever!

This is the ROM’s version. This typically starts at 0, and is incremented for each
published version.

12b ⟨project.mk 12b⟩≡ 12c ▷

VERSION := 0

This is the game’s ID, which should be 4 characters (preferably unaccented letters
and/or digits).

12c ⟨project.mk 12b⟩+≡ ◁ 12b 12d ▷

GAMEID := BOIL

The game’s title can be up to 11 characters, again preferably unaccented letters and/or
digits.

12d ⟨project.mk 12b⟩+≡ ◁ 12c 13a ▷

TITLE := BOILERPLATE

These two control the licensee code, which should be two characters (like usual). You
should keep the old code at 0x33, as this is required to get SGB compatibility (with no
drawbacks). The default is meant to mean “homebrew game”!

12

https://rgbds.gbdev.io/docs/rgbfix.1
https://gbdev.io/pandocs/The_Cartridge_Header
https://gbdev.io/pandocs/The_Cartridge_Header
https://gbdev.io/pandocs/The_Cartridge_Header#014c--mask-rom-version-number
https://gbdev.io/pandocs/The_Cartridge_Header#013f-0142--manufacturer-code
https://gbdev.io/pandocs/The_Cartridge_Header#0134-0143--title
https://gbdev.io/pandocs/The_Cartridge_Header#01440145--new-licensee-code
https://gbdev.io/pandocs/The_Cartridge_Header.html#014b--old-licensee-code
https://gbdev.io/pandocs/SGB_Unlocking

13a ⟨project.mk 12b⟩+≡ ◁ 12d 13b ▷

LICENSEE := HB
OLDLIC := 0x33

The cartridge type controls the available features of the emulated cartridge, especially
ROM and SRAM banking. You can get a list of valid values by running rgbfix -m help.
(If using a no-MBC setup, consider enabling -t in subsubsection 3.1.2.)

13b ⟨project.mk 12b⟩+≡ ◁ 13a 13c ▷

MBC := MBC5

This is the size of the on-board SRAM. It needs to be consistent with the MBC type
above: this should be zero if and only if the MBC type doesn’t include “RAM”8, and
vice-versa.

13c ⟨project.mk 12b⟩+≡ ◁ 13b 13d ▷

SRAMSIZE := 0x00

If you’re wondering where the ROM size parameter is—that one is automatically
computed by RGBFIX.

3.1.2 Compatibility settings

Uncomment any of these to apply them, or comment them to remove them; please refer
to RGBDS’ documentation (offline: man 1 rgbasm) The defaults should be sensible for
most projects, though.

These two control the Game Boy Color compatibility byte. If your game is intended
to run on GBC and monochrome consoles (including possibly SGB), uncomment the -c
line. If it is intended to run on GBC only, then you should uncomment the -C line
and still present some kind of fallback screen if detecting a non-Color Game Boy: the
monochrome consoles themselves do not check the header!

13d ⟨project.mk 12b⟩+≡ ◁ 13c 13e ▷

FIXFLAGS += -c
FIXFLAGS += -C

This flag simply sets the SGB compatibility flag.
13e ⟨project.mk 12b⟩+≡ ◁ 13d 14a ▷

FIXFLAGS += -s

8This indicates the size of a separate (“discrete”) RAM chip, so MBC2’s built-in SRAM doesn’t
count and this should be set to 0.

13

https://gbdev.io/pandocs/The_Cartridge_Header#0147--cartridge-type
https://gbdev.io/pandocs/The_Cartridge_Header#0149--ram-size
https://gbdev.io/pandocs/The_Cartridge_Header#0148--rom-size
https://rgbds.gbdev.io/docs/rgbasm.1
https://gbdev.io/pandocs/The_Cartridge_Header#0143--cgb-flag
https://gbdev.io/pandocs/CGB_Registers#detecting-cgb-and-gba-functions
https://gbdev.io/pandocs/The_Cartridge_Header#0146--sgb-flag

If you only intend your game to run on monochrome systems, these two flags can be
useful: they set up RGBDS’ memory layout to be more convenient for you.

14a ⟨project.mk 12b⟩+≡ ◁ 13e 14b ▷

LDFLAGS += -d
LDFLAGS += -w

And, finally, if you don’t want to use a MBC, this sets RGBDS’ memory layout in
“tiny” mode, which is more appropriate and convenient for such projects.

14b ⟨project.mk 12b⟩+≡ ◁ 14a 14c ▷

LDFLAGS += -t

3.1.3 Miscellanea

This defines the value that the ROM will be filled with. The default value of 0xFF
is actually significant: it encodes the rst $38 instruction, which helps catch runaway
execution (say, dereferencing a bad jump table index, or forgetting a ret...) by making
it jump to $0038, where a crash handler is located (by default).

14c ⟨project.mk 12b⟩+≡ ◁ 14b 14d ▷

PADVALUE := 0xFF

This sets the ROM’s file name.
14d ⟨project.mk 12b⟩+≡ ◁ 14c

ROMNAME := boilerplate
ROMEXT := gb

4 Overall structure
Here is where we collect all the things we have seen thus far.

4.1 Make configuration
First, we disable a lot of Make’s built-in rules, since they are at best useless to us. This
also improves build time somewhat.

14e ⟨Makefile 14e⟩≡ 15a ▷

.SUFFIXES:

14

Parallel builds are broken with macOS’ bundled version of Make; please see this
issue comment for a technical explanation. If you are using macOS, please consider
installing Make from Homebrew (brew install make, make sure to read the caveats
it prints). Delete the .NOTPARALLEL line if you want to have parallel builds regardless!

15a ⟨Makefile 14e⟩+≡ ◁ 14e 15b ▷

ifeq (${MAKE_VERSION},3.81)
.NOTPARALLEL:
endif

4.2 Miscellanea
Here, we have a “recursive $(wildcard)” function.

15b ⟨Makefile 14e⟩+≡ ◁ 15a 15c ▷

rwildcard = $(foreach d,$(wildcard $(1:=/*)),$(call rwildcard,$d,$2) $(filter $(subst *,%,$2),$d))

⟨Configuration 11b⟩

4.3 Rules
Phony rules must come before other rules so that all is the default target.

15c ⟨Makefile 14e⟩+≡ ◁ 15b

⟨Phony rules 10b⟩

⟨VPATH 7b⟩
⟨Asset rules 5⟩
⟨Assembly rules 8a⟩

15

https://github.com/ISSOtm/gb-starter-kit/issues/1#issuecomment-1793775226
https://github.com/ISSOtm/gb-starter-kit/issues/1#issuecomment-1793775226
https://brew.sh

	Build rules
	Asset rules
	Graphics conversion
	Compression
	VPATH

	Assembly rules
	Assembling source files
	Dependency auto-discovery
	Linking and fixing the ROM
	Submodules

	Phony rules
	Building the ROM
	Cleaning temporary and final files

	Configuration
	Project-specific configuration
	ROM header
	Compatibility settings
	Miscellanea

	Overall structure
	Make configuration
	Miscellanea
	Rules

